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 Gain background on geothermal heat exchange systems such as 
geothermal boreholes and horizontal loops

 Identify the basic principles of geothermal heat exchange systems 

 Learn about different applications of energy piles and other thermo-
active systems

 Learn about the geotechnical issues related to energy piles; 
temperature induced soil-pile interaction, possible temperature 
effects on soil behavior

 Gain related insight about recent research on energy piles and 
recently developed design guidelines

Learning Objectives
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 Background and concept

 Geothermal heat-exchange systems, energy piles

 Performance and design considerations

 Issues & geotechnical challenges in energy pile 
behavior

 Recent and ongoing research

 Design of energy piles

 Summary and conclusions

Webinar Outline : Energy Piles
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Significant energy consumption in buildings mainly for heating and cooling

U.S. Energy Flow Chart

Lawrence Livermore National Lab (2009)
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Courtesy J. Wheeler / Virginia Tech

It is All about Energy!
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 Driving factors – rising global energy demand and need to reduce 
carbon emissions (i.e., recent UK codes require zero-carbon buildings 
by 2019)

 Electricity generation is largest source of air pollution in US 

 Significant electricity consumption due to heating/cooling 

 Commercial and residential buildings consume 71% of US electricity 

 Buildings generate 43% of US carbon emissions 

Globally Increasing Need for Renewable Energy 
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U.S. Geothermal Resources & Projects
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Mean ground temperature

Ground Temperature Profile
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Mean ground temperature

Ground Temperature Profile
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Mean ground temperature

Ground Temperature Profile
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Ground temperature fluctuations in Lawrence, KS

Ground Temperature Profile
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 Background and concept

 Geothermal heat-exchange systems, energy piles

 Performance and design considerations

 Issues & geotechnical challenges in energy pile 
behavior

 Recent and ongoing research

 Design of energy piles

 Summary and conclusions

Outline : Energy Piles
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 Geothermal heat exchange systems provide ground-source energy for 
heating and cooling

 The use of ground-source systems for heating and cooling has 
increased exponentially especially in Europe

 Basic idea been around for long time – make use of the heat energy 
stored in the ground; access this energy using heat exchangers buried 
in the ground (fluid-filled HDPE loops)

 In ideal conditions these systems can provide majority of required 
heating/cooling energy and significantly reduce costs and carbon 
footprint

Ground Source Heating/Cooling 
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Geothermal Heat-Exchange Systems
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Geothermal Resources
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Geothermal Heat Exchange Systems

Geothermal Boreholes Horizontal Loops Energy Piles
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Geothermal Borehole Wells

 4-6 inch diameter 
borehole

 200 ft - 500 ft deep

 Small residential to
large commercial

Major cost is drilling and materials

20

Geothermal Borehole Wells
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Geothermal Borehole Wells – Design Considerations

Single U-bend or 
Double U-bend

Ground properties:

• Temperature

• Thermal conductivity

• Thermal diffusivity

Long-term effects

Spacing

Ground water

Grout Type

22

Horizontal Loops

6-10 ft
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Horizontal Loops

Soil properties:

• Temperature
(seasonal variation)

• Thermal conductivity

• Thermal diffusivity

Pipe configuration:

• Straight

• Horizontal Slinky

• Vertical Slinky

Shallow ground water

Spacing

24

Horizontal Loops

Recently built house in Blacksburg VA 
with a trench loop system
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Horizontal Loops

Horizontal loop systems 
within/beneath slabs
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Horizontal Loops

Energy slab (Messe U2 metro station, Vienna)
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Energy Piles – Dual Purpose Elements

Foundation support
(micropile, drilled shaft, CFA)

Heating/cooling
(PEX, HDPE)

Foundation support & 
heating/cooling

Geothermal LoopsDeep Foundation Energy Pile

+ =
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80 F

Energy Piles – Dual Purpose Elements

55 F
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Energy Piles

80 F55 F

30

Energy Piles – Installation
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Energy Piles – Installation
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Energy Piles – Installation

Reinforcement cage equipped with circulation loops
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Energy Piles – Installation

Lowering the 
reinforcement cage  
with U-tube loops

Completion of tube 
installation

After concrete
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Energy Piles – Driven Precast Concrete
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Increasing Use of Energy Piles
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Performance of Heat Exchange Systems

Poor ground quality

Average ground quality

Excellent ground quality
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 Environmentally-friendly, with relatively little power demand

 Help reduce fossil fuel demand, decreasing CO2 emissions

 Low maintenance and long lifetime

 Installation in foundation permits heat exchange system to be 
within building footprint, making more efficient use of material 
and space

 Offer more opportunities for radiant heating/cooling with better 
humidity control

 Less vulnerable to variation in energy source than hydropower 
(droughts), wind, and solar

 Less sensitive to energy price fluctuations

Advantages of Geothermal Heat Exchange 
Systems and Thermo-active Foundations

38

Frankfurt Main Tower

223 Energy piles were installed
Power : 500kW
Courtesy R. Katzenbach TUD
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Keble College, Oxford UK

First Energy Wall Project in the UK
Completion: 2002
Type of Absorber: Pile wall, 61 drilled shafts
Heating Capacity: 45 kW
Cooling Capacity: 45 kW
Courtesy Tony Amis, Geothermal International
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Knightsbridge Palace Hotel – Loop Installation into Energy Wall 
(Courtesy Tony Amis, Geothermal International)

Other Thermo-active Systems



21

41

Energy tunnel/anchor systems (Brandl 2006)

Other Thermo-active Systems
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Other Thermo-active Systems

Energy tunnel/anchor systems (Brandl 2006)
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Fan connected to a geothermal borehole system or energy foundation 
and forces air through grains which eliminates grain moisture

Ground-source Grain Drying
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Pavement and Bridge Deck Deicing
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Geothermal Bridge Deck Deicing

 Heat exchanger foundation 
elements can be used to deice 
bridge decks in the winter. 

 Can reduce bridge deck 
deterioration and aging. 

 Bridge deck and the tubing 
system can be used for heat 
collection in the summer.

 Can also utilize the approach 
embankment as a thermal 
mass for heat storage and 
extraction.
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Geothermal Bridge Deck Deicing

Small-scale Bridge Deck Slab 
(8 ft x 10 ft)
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Bridge Deck Deicing Using Energy Piles

Model Scale Field Experiments
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Model Scale Field Experiments

1 inch snow After snow melting
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 Background and concept

 Geothermal heat-exchange systems, energy piles

 Performance and design considerations

 Issues & geotechnical challenges in energy pile 
behavior

 Recent and ongoing research

 Design of energy piles

 Summary and conclusions

Outline : Energy Piles
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 Performance depends on many site-specific factors, such as soil 
type (thermal conductivity is key!), ground water depth, initial 
ground temperature

 Best conditions are saturated sands and clays, especially with 
ground water flow

 Thermal yield from an energy pile under favorable (i.e. high 
thermal conductivity) ground conditions ~25W/ft

 Say heating/cooling load for a building is about 150 kW or less

 Assuming good soil conditions, and using 60-ft long piles, 18-in 
diameter

 We would need about 100 energy piles to supply heating and 
cooling needs for such a building

Energy Pile Performance 
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 Soil

 Circulation loop – mostly High Density Polyethylene 
(HDPE),  PEXa

 Sand-Bentonite grout (for geothermal loops)

 Concrete (for energy piles)

 Heat exchange fluid (Propylene glycol mix)

Materials in Geothermal Heat Exchange Systems
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 Heating/cooling demand

Design Considerations
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 Heating/cooling demand

 Spacing / pattern

Design Considerations

MainTower in Frankfurt
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 Heating/cooling demand

 Spacing / pattern

 Pipe/loop density

Design Considerations
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 Heating/cooling demand

 Spacing / pattern

 Pipe/loop density

 Soil properties (thermal conductivity)

Design Considerations

from Tarnawski et al. (2009)
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 Heating/cooling demand

 Spacing / pattern

 Pipe/loop density

 Soil properties (thermal conductivity)

 Initial ground temperature

Design Considerations
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 Heating/cooling demand

 Spacing / pattern

 Pipe/loop density

 Soil properties (thermal conductivity)

 Initial ground temperature

 Ground water; depth, flow

Design Considerations

Ground Temperature (°F)
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 Heating/cooling demand

 Spacing / pattern

 Pipe/loop density

 Soil properties (thermal conductivity)

 Initial ground temperature

 Ground water; depth, flow

 Long-term effects

Design Considerations

Time evolution of temperatures
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 Background and concept

 Geothermal heat-exchange systems, energy piles

 Performance and design considerations

 Issues & geotechnical challenges in energy pile 
behavior

 Recent and ongoing research

 Design of energy piles

 Summary and conclusions

Outline : Energy Piles
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Effect of Ground Cooling

Ground cooling reduces stresses along pile cross-section, 
can cause tensile stresses

Structural Load Load + Cooling

S
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n 
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Cooling

+ =

Axial Load
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Effect of Ground Heating

Heating can cause increased stresses along pile cross-section

Structural Load Load + Heating
S
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Soil 
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Axial Load

Heating
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Axial Load
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Pile-Soil Interaction – Ground Heating

Soil 
Resistance

Axial Load

Floating Pile

Soil 
Resistance

Axial Load 

End-Bearing Pile

End restraints (top and bottom of the pile) effect the load transfer 
mechanism during heating and cooling
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K. Soga / T. Amis – Lambeth College L. Laloui - EPFL

Normal Stress at Pile Cross Section (kPa)
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Years of Heat Pump Operation
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Long Term Performance of Energy Piles

Houston TX
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Trevor Day School in Manhattan, New York City
Collaboration with Langan, Geothermal International, Geo-Instruments

Long Term Monitoring of Energy Piles
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 Background and concept

 Geothermal heat-exchange systems, energy piles

 Performance and design considerations

 Issues & geotechnical challenges in energy pile 
behavior : Temperature effects on soil behavior

 Recent and ongoing research

 Design of energy piles

 Summary and conclusions

Outline : Energy Piles
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 Temperature changes within the soil around the energy pile 
due to injection of heat in the summer and extraction in the 
winter.

 The nature of heating/cooling of the soil :  slow/drained vs. 
fast/undrained; seasonally cyclic

 Potential effects on soil strength, compressibility and excess 
pore water pressure generation.

 Flow and deformation field, soil-pile interaction and 
performance of the deep foundation system.   

Temperature Effects on Soil Behavior
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Pore Pressures during Undrained Heating

25-60% excess pore pressure ratio with T = 20°C
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Volume Change during Drained Heating

Volumetric Strain (v)
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 Volume change during drained heating highly depends on
overconsolidation ratio (OCR).

 As OCR increases, clays tend to be more dilative.

 Overconsolidated clays show elastic, normally consolidated clays
show plastic behavior during temperature cycles.
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Overconsolidation Ratio
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Activity
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 Temperature induced volume change potential is a function
of plasticity index and clay percentage

 Higher volumetric strain with more active clays

T = 20-40oC

T = 60-80oC

Volume Change during Drained Heating
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 Yield Pressure decreases with increasing temperature
(lateral pressures around the energy pile?)

 Compression index remains unchanged
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Stress-strain behavior and pore pressure development during
loading at different temperatures
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Effect of Temperature on Shear Strength

 Specimen heated drained and then sheared undrained

 Increase in shear strength, decrease in pore pressure
are reported

T (°C)

0 20 40 60 80

R
at

io
 o

f S
o

il 
S

tr
en

g
th

 to
S

tr
en

gt
h

 a
t R

o
om

 T
e

m
pe

ra
tu

re

1.00

1.25

1.50

1.75

Bergado et al. (2007)
Burghignoli et al. (2000)
Cekerevac et al. (2005)
Kuntiwattanakul et al. (1995)
Tanaka et al. (1997)
Trani et al. (2000)

T (oC)

0 20 40 60 80

E
xc

e
ss

 P
o

re
 P

re
ss

ur
e

 R
a

tio
U

 / 
U

 @
 T

 =
 R

o
o

m
 T

e
m

p
e

ra
tu

re

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Abuel-Naga et al. (2007)
Graham et al. (2001)  
Burghignoli et al (2000) 
Kuntiwattanakul et al. (1995) 
Trani et al. (2010)



38

75

 Background and concept

 Geothermal heat-exchange systems, energy piles

 Performance and design considerations

 Issues & geotechnical challenges in energy pile 
behavior

 Recent and ongoing research

 Design of energy piles

 Summary and conclusions

Outline : Energy Piles

76

 Four Energy Piles – 10-inch diameter, 100 ft long – instrumented
 Several observation boreholes - thermistors

Virginia Tech Energy Pile Field Test Setup

PEX 
Single Loop

PEX 
Double Loop

HDPE 
Single Loop

HDPE 
Single Loop

Observation 
Point

Test Pile

8 ft (2.4 m) 8 ft (2.4 m)

8 
ft 

(2
.4

 m
)

Reaction Pile Reaction Pile
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Soil Profile and Ground Temperatures

Ground Temperature (°F)
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HDPE Geothermal Loop and U-Bend

Geothermal Circulation Loops
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REHAU PEXa Geothermal Loop and U-Bend

Geothermal Circulation Loops
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Drilling

Energy Pile Installation
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Energy Pile Installation

82

Energy Pile Installation
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Thermal Conductivity Testing
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Thermo-Mechanical Load Test
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Thermo-Mechanical Load Test

Thermo-mechanical Load Test Set-up
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Pile Load (ton)
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Temperature cycles applied in stages with a temperature controller
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Pile Load (ton)
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Pile Load (ton)
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Pile Load (ton)
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Pile Load (ton)
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 Background and concept

 Geothermal heat-exchange systems, energy piles

 Performance and design considerations

 Issues & geotechnical challenges in energy pile 
behavior

 Recent and ongoing research

 Design of energy piles

 Summary and conclusions

Outline : Energy Piles
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 Ground Source Heat Pump Association – Thermal Pile Standard 

 Check thermally induced pile stresses

 Pile performance under repeated cyclic loading (annual heating and 
cooling)

 Estimate pile settlement due to temperature cycles

Design of Energy Piles

http://www.gshp.org.uk/GSHPA_Thermal_Pile_Standard.html
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Temperature Induced Pile Stresses

Check pile stresses due to thermal loading
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Temperature Induced Pile Stresses

Heating and cooling induced pile stresses
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Pile Performance under Structural and Cyclic 
Thermal Loads

Check pile capacity under cyclic loading (heating and cooling)
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Temperature Induced Pile Head Settlement

Check pile stresses due to thermal loading
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Temperature Induced Pile Head Settlement
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Temperature Induced Pile Head Settlement
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 Use of deep foundations as heat exchangers can be an environmental 
friendly way of deicing bridge decks in the winter.

 Energy pile usage exponential in Europe and Japan; but not common 
in US

 Need better energy pile design guidelines developed by geotechnical 
engineers – recently developed by UK group under IGSHP

 Thermal loads can increase stresses in piles but this effect is very 
small for the level of temperature changes during heat pump 
operations

 Long term energy pile operation not sustainable for unbalanced 
thermal loads; must design system to be balanced

 New energy  applications such as bridge deck deicing being studied 

 Great opportunity for civil engineers, especially geotechnical 
engineers, but we must move faster

Summary and Conclusions

102

Thank You!

Energy Piles - Background and Geotechnical 
Engineering Concepts

C. Guney Olgun

Department of Civil and Environmental Engineering, Virginia Tech

e-mail : colgun@vt.edu
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Pass the P.E./S.E. Exam and Save with ASCE’s New Individual Pricing for 
Review Courses. Three review courses are offered:

 P.E. Civil Exam

 P.E. Environmental Exam 

 S.E. Structural Exam 

Register by July 17 and SAVE $100

For more information and registration visit www.asce.org/pereview

Pay a single site registration fee and an unlimited number of  people in your organization can 
attend at that site or attend as an individual.

Live P.E./S.E. Exam Review Courses, Fall 2013

Mon., Aug. 12 – Gravity Loads Wed., Aug. 14 – Lateral Loads

Mon., Aug. 19 – Structural Analysis Wed., Aug. 21 – Bridge Loads 

Mon., Aug. 26 – Bridge Design Wed., Aug. 28 – Masonry Design

Wed., Sept. 4 – Timber Design Wed., Sept. 11 – Concrete Buildings

Mon., Sept. 16 – Prestressed Concrete Wed., Sept. 18 – Seismic Design

Wed., Sept. 25 – Steel Design

S.E. Structural Exam Review Course - with Seismic 
Design Preparation
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Tue., Aug.13 – Structural  Analysis Thur., Aug. 15 – Strength of  Materials 

Tue., Aug. 20 – Structural Design Thur., Aug. 22 – Construction Materials

Tue., Aug. 27 – Geometric Design Thur., Aug. 29 – Engineering Cost Analysis

Tue., Sept. 3 – Hydraulics Thur., Sept. 5 - Hydraulics

Tue., Sept. 10 – Waste & Water Treatment Thur., Sept. 12 – Geomechanics

Tue., Sept. 17 – Foundation Engineering Thur., Sept. 19 – Construction Scheduling      
and Estimating

P.E. Civil Exam Review, 12-Part Course, Fall 2013

P.E. Civil Exam Review, 17-Part Course, Fall 2013

Tue., Aug.13 – Structural  Analysis Thur., Aug. 15 – Strength of  Materials 

Tue., Aug. 20 – Structural Design Thur., Aug. 22 – Construction Materials

Tue., Aug. 27 – Geometric Design Thur., Aug. 29 – Engineering Cost Analysis

Tue., Sept. 3 – Hydraulics Thur., Sept. 5 - Hydraulics

Tue., Sept. 10 – Waste & Water Treatment Thur., Sept. 12 – Geomechanics

Tue., Sept. 17 – Foundation Engineering Thur., Sept. 19 – Construction Scheduling      
and Estimating

Mon., Sept. 9 – Water Resource Depth Mon., Sept. 23 – Structures Depth

Tue., Sept. 24 – Geotechnical Depth Thur., Sept. 26 – Transportation Depth

Fri., Sept. 27 - Construction Depth
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Fri., Aug. 16 – Environmental Assessment 
and Remediation

Fri., Aug. 23 – Hazardous Waste and 
Emergency Operations

Fri., Aug. 30 – Storm Water Fri. Sept. 6 – Waste and Water Treatment

Fri., Sept. 13 – Water Quality Fri., Sept. 20 – Air Quality

P.E. Environmental Exam Review Course


